Chance-Constrained Probabilistic Simple Temporal Problems

نویسندگان

  • Cheng Fang
  • Peng Yu
  • Brian Charles Williams
چکیده

Scheduling under uncertainty is essential to many autonomous systems and logistics tasks. Probabilistic methods for solving temporal problems exist which quantify and attempt to minimize the probability of schedule failure. These methods are overly conservative, resulting in a loss in schedule utility. Chance constrained formalism address over-conservatism by imposing bounds on risk, while maximizing utility subject to these risk bounds. In this paper we present the probabilistic Simple Temporal Network (pSTN), a probabilistic formalism for representing temporal problems with bounded risk and a utility over event timing. We introduce a constrained optimisation algorithm for pSTNs that achieves compactness and efficiency through a problem encoding in terms of a parameterised STNU and its reformulation as a parameterised STN. We demonstrate through a car sharing application that our chance-constrained approach runs in the same time as the previous probabilistic approach, yields solutions with utility improvements of at least 5% over previous arts, while guaranteeing operation within the specified risk bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Over-Constrained Probabilistic Temporal Problems through Chance Constraint Relaxation

When scheduling tasks for field-deployable systems, our solutions must be robust to the uncertainty inherent in the real world. Although human intuition is trusted to balance reward and risk, humans perform poorly in risk assessment at the scale and complexity of real world problems. In this paper, we present a decision aid system that helps human operators diagnose the source of risk and manag...

متن کامل

A polyhedral study of the static probabilistic lot-sizing problem

We study the polyhedral structure of the static probabilistic lot-sizing problem and propose valid inequalities that integrate information from the chance constraint and the binary setup variables. We prove that the proposed inequalities subsume existing inequalities for this problem, and they are facet-defining under certain conditions. In addition, we show that they give the convex hull descr...

متن کامل

Time Resource Networks

The problem of scheduling under resource constraints is widely applicable. One prominent example is power management, in which we have a limited continuous supply of power but must schedule a number of power-consuming tasks. Such problems feature tightly coupled continuous resource constraints and continuous temporal constraints. We address such problems by introducing the Time Resource Network...

متن کامل

Chance-Constrained Consistency for Probabilistic Temporal Plan Networks

Unmanned deep-sea and planetary vehicles operate in highly uncertain environments. Autonomous agents often are not adopted in these domains due to the risk of mission failure, and loss of vehicles. Prior work on contingent plan execution addresses this issue by placing bounds on uncertain variables and by providing consistency guarantees for a ‘worst-case’ analysis, which tends to be too conser...

متن کامل

Inexact stabilized Benders’ decomposition approaches to chance-constrained problems with finite support

Motivated by a class of chance-constrained optimization problems, we explore modifications of the (generalized) Benders’ decomposition approach. The chance-constrained problems we consider involve a random variable with an underlying discrete distribution, are convex in the decision variable, but their probabilistic constraint is neither separable nor linear. The variants of Benders’ approach w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014